skip to main content


Search for: All records

Creators/Authors contains: "Linz, H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report on one of the highest sensitivity surveys for molecular lines in the frequency range 6.0 to 7.4 GHz conducted to date. The observations were done with the 305m Arecibo Telescope toward a sample of twelve intermediate/high-mass star forming regions. We searched for a large number of transitions of different molecules, including CH3OH and OH. The low RMS noise of our data (~5 mJy for most sources and transitions) allowed detection of spectral features that have not been seen in previous lower sensitivity observations of the sources, such as detection of excited OH and 6.7 GHz CH3OH absorption. A review of 6.7 GHz CH3OH detections indicates an association between absorption and radio continuum sources in high-mass star forming regions, although selection biases in targeted projects and low sensitivity of blind surveys imply incompleteness. Absorption of excited OH transitions was also detected toward three sources. In particular, we confirm a broad 6.035 GHz OH absorption feature in G34.26+0.15 characterized by an asymmetric blue-shifted wing indicative of expansion, perhaps a large scale outflow in this HII region. 
    more » « less
  2. null (Ed.)
    Context. Recent surveys of the Galactic plane in the dust continuum and CO emission lines reveal that large (≳50 pc) and massive (≳10 5 M ⊙ ) filaments, know as giant molecular filaments (GMFs), may be linked to Galactic dynamics and trace the mid-plane of the gravitational potential in the Milky Way. Yet our physical understanding of GMFs is still poor. Aims. We investigate the dense gas properties of one GMF, with the ultimate goal of connecting these dense gas tracers with star formation processes in the GMF. Methods. We imaged one entire GMF located at l ~ 52–54° longitude, GMF54 (~68 pc long), in the empirical dense gas tracers using the HCN(1–0), HNC(1–0), and HCO + (1–0) lines, and their 13 C isotopologue transitions, as well as the N 2 H + (1–0) line. We studied the dense gas distribution, the column density probability density functions (N-PDFs), and the line ratios within the GMF. Results. The dense gas molecular transitions follow the extended structure of the filament with area filling factors between 0.06 and 0.28 with respect to 13 CO(1–0). We constructed the N-PDFs of H 2 for each of the dense gas tracers based on their column densities and assumed uniform abundance. The N-PDFs of the dense gas tracers appear curved in log–log representation, and the HCO + N-PDF has the flattest power-law slope index. Studying the N-PDFs for sub-regions of GMF54, we found an evolutionary trend in the N-PDFs that high-mass star-forming and photon-dominated regions have flatter power-law indices. The integrated intensity ratios of the molecular lines in GMF54 are comparable to those in nearby galaxies. In particular, the N 2 H + / 13 CO ratio, which traces the dense gas fraction, has similar values in GMF54 and all nearby galaxies except Ultraluminous Infrared Galaxies. Conclusions. As the largest coherent cold gaseous structure in our Milky Way, GMFs, are outstanding candidates for connecting studies of star formation on Galactic and extragalactic scales. By analyzing a complete map of the dense gas in a GMF we have found that: (1) the dense gas N-PDFs appear flatter in more evolved regions and steeper in younger regions, and (2) its integrated dense gas intensity ratios are similar to those of nearby galaxies. 
    more » « less